

UNIVERSIDADE FEDERAL DE SANTA CATARINA

CENTRO DE CIÊNCIAS FÍSICAS E MATEMÁTICAS

Departamento de Física

Campus Trindade - CEP 88040-900 -Florianópolis SC Tel: 48 3721-2876

PLANO DE ENSINO 2024.2

Em acordo com a Resolução nº 003/CEPE/84 de 05 de Abril de 1984

I. IDENTIFICAÇÃO DA DISCIPLINA:

CÓDIGO	NOME DA DISCIPLINA	HORAS-AULA SEMANAIS		HORAS-AULA
		TEÓRICAS	PRÁTICAS	SEMESTRAIS
FSC 5165	FÍSICA GERAL IIA	4 HA	00	72 HA

II. PRÉ-REQUISITO(S)(Código(s) e nome da(s) disciplina(s)

FSC 5107 Física Geral IA MTM 3101 Cálculo I

III. CURSO(S) PARA O(S) QUAL(IS) A DISCIPLINA É OFERECIDA

NOME DO CURSO

Física - Bacharelado

IV. PROFESSOR(ES) MINISTRANTE(S)

Marco Aurélio Cattacin Kneipp

V. EMENTA

Rotação de corpos rígidos. Dinâmica do movimento de rotação. Gravitação. Equilíbrio e elasticidade. Movimento periódico. Ondas mecânicas. Interferênciade ondas e modos normais. Som.

VI. OBJETIVOS

- A) GERAIS: Desenvolver a capacidade dos estudantes de resolver problemas envolvendo conceitos básicos da mecânica newtoniana, utilizando o formalismo matemático da álgebra vetorial e do cálculo diferencial e integral, preparando-os para as disciplinas específicas do curso de física.
- B) ESPECÍFICOS: Ao final do curso, uma vez assimilados os conceitos elementares de mecânica vetorial e ondulatória, o aluno deverá ser capaz de tratar matematicamente modelos de sistemas físicos, aplicando esses conceitos à resolução de problemas envolvendo a rotação e equilíbrio de corpos rígidos, gravitação, ondas em meios elásticos e acústica.

VII. CONTEÚDO PROGRAMÁTICO

1. Cinemática e Dinâmica da Rotação

- 1.1- Velocidade angular e aceleração angular.
- 1.2- Relações entre as variáveis lineares e angulares.
- 1.3- Energia cinética de rotação.
- 1.4- Cálculo do momento de inércia e o teorema dos eixos paralelos.
- 1.5- Torque
- 1.6- Torque e a aceleração angular de um corpo rígido.
- 1.7- Trabalho, potência e o teorema trabalho-energia cinética no movimento de rotação.
- 1.8- Rolamento.
- 1.9- Torque e momento angular.
- 1.10 Momento angular de um sistema de partículas e de um corpo rígido com eixo fixo.
- 1.11- Conservação do momento angular.
- 1.12- Movimento de um giroscópio.

2. Equilíbrio e elasticidade

- 2.1- Condições de equilíbrio.
- 2.2- O centro de gravidade.
- 2.3- Elasticidade.

3. A gravitação universal

- 3.1- Introdução histórica de gravitação.
- 3.2- A lei da gravitação universal de Newton.
- 3.3- Gravitação e o princípio da superposição.
- 3.4- Gravitação próxima à superfície da Terra.
- 3.5- Gravitação no interior da Terra.
- 3.6- Medida da constante gravitacional.
- 3.7- Campo e energia potencial gravitacional.
- 3.8- Leis de Kepler e o movimento dos planetas e satélites.

4. Oscilações

- 4.1- Sistema massa-mola e o movimento harmônico simples.
- 4.2- Energia no movimento harmônico simples.
- 4.3- Pêndulos: de torção, simples e físico.
- 4.4- Movimento circular uniforme e movimento harmônico simples.
- 4.5- Movimento geral nas vizinhanças do equilíbrio estável.
- 4.6- Oscilações amortecidas.

5. Ondas

- 5.1- O conceito de ondas.
- 5.2- Ondas em uma dimensão.
- 5.3- A equação das cordas vibrantes.
- 5.4- Energia e intensidade das ondas progressivas.
- 5.5- O princípio da superposição.
- 5.6- Interferência de ondas.
- 5.7- Ondas estacionárias e modos normais de oscilação.

6. Som

- 6.1- Ondas sonoras.
- 6.2- Velocidade e propagação de ondas sonoras.
- 6.3- Intensidade do som.
- 6.4- Batimentos.
- 6.5- Efeito Doppler.

VIII. PROCEDIMENTOS METODOLÓGICOS / DESENVOLVIMENTO DO PROGRAMA

Os alunos terão um horário para tirar dúvidas com o professor. Os alunos também contarão com apoio de monitores.

IX. ATIVIDADES PRÁTICAS (se houver)

X. FORMAS DE AVALIAÇÃO E REGISTRO DE FREQUÊNCIA

Serão realizadas 3 provas. Se a média das notas obtidas for igual ou superior a 6,0 e a frequência na disciplina for igual ou superior a 75%, o estudante estará aprovado. Se a média for igual ou superior a 3,0 e inferior a 6,0, e a frequência for igual ou superior a 75% o estudante poderá realizar uma prova de recuperação. A prova de recuperação será realizada ao final do semestre letivo e versará sobre toda a matéria. A nota final será a média aritmética entre a média das notas de avaliação e a nota da prova de recuperação e deverá ser maior ou igual a 6,0 para aprovação.

A reposição de avaliação deve ser solicitada junto a secretaria do Departamento de Física com cópia de atestado médico em até 72 horas após a realização da prova-

XII. ATENDIMENTO AO ESTUDANTE (horário/Monitoria - se houver)

Haverá atendimento com o professor nas sextas-feiras das 13h30 às 15h00, além de atendimento com os monitores.

XIII. REFERÊNCIAS BIBLIOGRÁFICAS (Básica e Complementar)

BIBLIOGRAFIA:

SEARS, Francis; YOUNG, Hugh D.; FREEDMAN, Roger A.; ZEMANSKY, Mark Waldo. Física. Vols. I e II. 10.ed. Rio de Janeiro: Livros Técnicos e Científicos Editora, 2010.

HALLIDAY, David; RESNICK, Robert; WALKER, Jearl. Fundamentos de Física. Vols.I e II. 9.ed. Rio de Janeiro: Livros Técnicos e Científicos, 2012.

NUSSENZVEIG, Herch Moisés. Curso de Física Básica. Vols. I e II. 5. Ed. São Paulo: Editora Edgard Blücher Ltda., 2013.

TIPLER, Paul Allen; MOSCA, Gene. Física: para cientistas e engenheiros. Vols. I e II. 6. ed. Rio de Janeiro: LTC, 2009.

Semana	
1	- Cinemática da rotação
2	- Momento de inércia
	- Energia cinética de rotação
3	- Torque
	- Trabalho, Potência e Torque
4	- Momento angular de uma partícula e de um sistema de partículas.
	- Conservação de momento angular.
5	- Condições de equilíbrio
	- Aula de exercícios
6	- Sistema massa-mola e Pêndulo de torção
	- Prova P1
7	- Pêndulo Simples e Pêndulo Físico
	- Movimento na vizinhança de ponto de equilíbrio
8	- Oscilações Amortecidas
	- Oscilações Forçadas e Ressonância
9	- Equação das cordas vibrantes e velocidade de onda
	- Princípio de Superposição, interferência e Ondas estacionárias
10	- Reflexão de ondas, ondas estacionárias e ressonância
	- Ondas sonoras, velocidade e propagação de ondas sonoras
11	- Prova P2
	- Interferência, intensidade e batimentos
12	- Ondas estacionárias

	- Efeito Doppler
13	- Lei da Gravitação Universal e Princípio da Superposição
	- Energia Potencial Gravitacional e velocidade de escape
14	- Energia Potencial e Força Gravitacional
15	- Gravitação próxima à superfície da Terra e a medida da constante da gravitação
	Leis de Kepler e o movimento dos planetas e satélites.
16	- Prova P3
17	- Prova de Recuperação